Skip to main content
Log in

Phenology, growth, and response to light of ciruela Mexicana (Spondias purpurea L., Anacardiaceae)

FenologÍa, Crecimiento, y Respuesta a la Luz en Ciruela Mexicana (Spondias purpurea L., Anacardiaceae)

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

The phenology of vegetative and reproductive patterns, shoot growth, and the physiological and anatomical plasticity of leaves of ciruela mexicana (Spondias purpurea L) exposed to different ranges of light are described. Flower and fruit production occur during the dry season. Shoot elongation occurs during late spring and summer. Growth rates of S. purpurea are similar to the rates reported for fast growing plants, when growing on rocky slopes in shallow infertile soils. Leaves exposed to the highest photosynthetic photon flux (PPF) had a thicker mesophyll than leaves that developed under the shade. Midday depression of photosynthesis was observed forS. purpurea. The reduction in the rates of net CO2 uptake was related to high temperatures, high PPF, and increased leaf starch content. Plasticity in physiological and anatomical traits as observed in S. purpurea may be advantageous in the low-resource rocky environments where it grows.

Résumé

En este trabajo se estudió el tiempo de ocurrencia del desarrollo reproductivo y vegetativo, crecimiento de ramas y la plasticidad anatómica y fisiolǵica de las hojas de ciruela mexicana (Spondias purpurea L.) expuestas a diferentes rangos de luz. La floración y fructificatión ocurren durante la época seca del año. La elongatión de las ramas ocurre al final de la primavera y durante el verano. Las tasas de crecimiento deS. purpurea son similares a las registrados para plantas de râpido crecimiento, no obstante que crece en pendientes pronunciadas y en suelos someros de baja fertilidad. Las hojas expuestas a altos niveles de flujo fotónico fotosintético (PPF) mostraron un mesófilo más grueso que las que se desarrollaron bajo la sombra. Se registró descenso de la fotosíntesis durante el mediodia, así como una reductión en los valores de asimilaciôn neta de CO2 la cual fue relacionada con allas temperaturas, niveles altos de PPF y un incremento en el contenido foliar de almidón. La plasticidad anatómica y fisiológica que presenta S. purpurea, podría ser una ventaja en ambientes rocosos con baja disponibilidad de recursos, donde comúnmente crece esta especie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aerts, R., and F. S. Chapin III. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Pages 1–67in H. A. Fitter and D. G. Raffaelli, eds. Advances in Ecological Research. Academic Press, San Diego, California.

    Google Scholar 

  • Aldana, R. M. 1986. El campo Jalisciense durante el Porfiriato. Instituto de Ciencias Sociales, Universidad de Guadalajara, Guadalajara, Mexico.

    Google Scholar 

  • Arntz, A. M., andL. F. Delph. 2001. Pattern and process: evidence for the evolution of photosynthetic traits in natural populations. Oecologia 127: 455–467.

    Article  Google Scholar 

  • Avitia, G. E. 1996. Anatomia precigótica y postcigótica en relacion al aborto de övulos y semillas enSpondias purpurea L. Unpublished doctoral thesis, Colegio de Postgraduados, Montecillo, Mexico.

    Google Scholar 

  • Benitez, F. 1986. La ruta de Hernan Cortes. Fondo de Cultura Economica, México, D.F.

    Google Scholar 

  • Björkman, O., andB. Demming-Adams. 1995. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. Pages 17–47 in E. D. Schulze and M. M. Caldwell, eds., Ecophysiology of photosynthesis. Springer Verlag, New York.

    Google Scholar 

  • Bolhãr-Nordenkampf, H. R., andG. Draxler. 1993. Functional leaf anatomy. Pages 91–112 in D. O. Hall, J. M. O. Scurlock, H. R. Bolhãr-Nordenkampf, R. C. Leegood, and S. P. Long, eds., Photosynthesis and production in a changing environmental: a field and laboratory manual. Chapman & Hall, New York.

    Google Scholar 

  • Bruinsma, J. 1961. A comment on the spectrophotometric determination of chlorophyll. Biochemica et Biophysica Acta 52:579–582.

    Article  Google Scholar 

  • Castro, A. Z. 1977. Cultivo del ciruelo (Spondias spp.), en el municipio de San Cristobal de la Barranca, Jalisco. Unpublished bachelor’s thesis, Universidad de Guadalajara, Guadalajara, Mexico.

    Google Scholar 

  • ChapinIII, S. F. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11:233–260.

    Article  CAS  Google Scholar 

  • Chazdon, L. R., R. W. Pearcy, D. W. Lee, andN. Fletcher. 1996. Photosynthetic responses of tropical plants to contrasting light environments. Pages 5–55 in S. Mulkey, R. L. Chazdon, and A. P. Smith, eds., Tropical forest plant ecophysiology. Chapman and Hall, New York.

    Google Scholar 

  • Cowan, I. R. 1995. As to the mode of action of the guard cells in dry air. Pages 205–229 in E. D. Schulze and M. M. Caldwell, eds., Ecophysiology of photosynthesis. Springer Verlag, New York.

    Google Scholar 

  • De Acosta, J. 1985. Historia natural y moral de las Indias. Seconda edición. Fondo de Cultura Economica, México, D.F.

    Google Scholar 

  • Ellsworth, D. S., andP. B. Reich. 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178.

    Article  Google Scholar 

  • Epstein, L. 1998. A riqueza do umbuzeiro. Revista Bahia Agricola 2:1–3.

    Google Scholar 

  • Frankie, G. W., H. G. Baker, andP. A. Opler. 1974. Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology 62:881–919.

    Article  Google Scholar 

  • Galvan, R. R. 1988. Los municipios de Jalisco. Colección Enciclopedica de los Municipios de Mexico. Secretaria de Gobernacion y Gobierno del Estado de Jalisco, Centra Nacional de Estudios Municipales de la Secretaría de Gobernación, México D.F.

  • Grime, J. P., and R. Hunt. 1975. Relative growthrate its range and adaptive significance in a local flora. Journal of Ecology 69:393–422.

    Google Scholar 

  • Haissig, B. E., andE. R. Dickson. 1979. Starch measurements in plant tissue using enzymatic hydrolysis. Plant Physiology 47:151–157.

    Article  CAS  Google Scholar 

  • Hüllgren, J. E., T. Lundmark, andM. Strand. 1990. Photosynthesis of Scots pine in the field after night frosts during summer. Plant Physiology and Biochemistry 28:137–445.

    Google Scholar 

  • Holbrook, N. M., J. L. Whitbeck, andH. A. Mooney. 1995. Drought responses of neotropical dry forest trees. Pages 243–276 in S. Bullock, A. Mooney, and E. Medina, eds., Seasonal dry tropical forest. Cambridge University Press, New York

    Google Scholar 

  • Jansen, H. D. 1967. Synchronization of sexual reproduction of trees within the dry season in Central America. Evolution 21:620–637.

    Article  Google Scholar 

  • Jensen, W. H. 1962. Botanical histochemistry. W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Kamaluddini, M., andJ. Grace. 1992. Photoinhibition and light acclimation in seedlings ofBischofia javanica, a tropical forest tree from Asia. Annals of Botany (London) n.s., 69:47–52.

    Google Scholar 

  • Körner, Ch. 1995. Leaf diffusive conductances in the major vegetation types of the Globe. Pages 463–490 in E. D. Schulze and M. M. Caldwell, eds., Ecophysiology of photosynthesis. Springer Verlag, New York.

    Google Scholar 

  • Kozlowski, T. T., P. J. Kramer, andS. G. Pallardy. 1991. The physiological ecology of woody plants. Academic Press, San Diego, California.

    Google Scholar 

  • Lambers, H., S. F. Chapin III, andT. L. Pons. 1998. Plant physiological ecology. Springer Verlag, New York.

    Google Scholar 

  • Loechle, C. 1988. Tree life history strategies: the role of defenses. Canadian Journal of Forest Research 18:209–227.

    Google Scholar 

  • Long, P. S., S. Humphries, andP. G. Falkowski. 1994. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology 45:633–672.

    Article  CAS  Google Scholar 

  • Lüttge, U. 1997. Physiological ecology of tropical plants. Springer Verlag, New York.

    Google Scholar 

  • Merry weather, J., andA. Fitter. 1996. Phosphorous nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytologist 132:307–311.

    Article  CAS  Google Scholar 

  • McGonigle, T. P., M. H. Miller, D. G. Evans, G. L. Fairchild, andJ. A. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115:495–501.

    Article  Google Scholar 

  • Mott, K. A., andO. Michaelson. 1991. Amphistomy as an adaptation to light intensity inAmbrosia cordifolia (Compositae). American Journal of Botany 78:76–79.

    Article  Google Scholar 

  • Mulkey, S. S., R. L. Chazdon, andA. P. Smith. 1996. Tropical forest plant ecophysiology. Chapman and Hall, New York.

    Google Scholar 

  • Mulkey, S. S., andS. J. Wright. 1996. Influence of seasonal drought on the carbon balance of tropical forest plants. Pages 187–216 in S. S. Mulkey, R. L. Chazdon, and A. P. Smith, eds., Tropical forest plant ecophysiology. Chapman and Hall, New York.

    Google Scholar 

  • Nakano, H., A. Makino, andT. Mae. 1997. The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology 115:191–198.

    PubMed  CAS  Google Scholar 

  • Nobel, P. S. 1991. Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytologist 119:183–205.

    Article  CAS  Google Scholar 

  • Pathre, U., A. K. Sinha, P. A. Shirke, andP. V. Sane. 1998. Factors determining the midday depression of photosynthesis in trees under monsoon climate. Trees 12:472–481.

    Article  Google Scholar 

  • Pearcy, R. W., andD. A. Sims. 1994. Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. Pages 145–174 in M. M. Caldwell and R. W. Pearcy, eds., Exploitation of environmental heterogeneity by plants. Academic Press, Heidelberg, Germany.

    Google Scholar 

  • Pennington, T. D., andJ. Sarukhan. 1998. Arboles tropicales de México. Segunda edición. Fondo de Cultura Economica, Universidad Nacional Autonoma de México, México D.F.

    Google Scholar 

  • Phillips, J. M., andD. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transaction of British Mycological Society 55:158–161.

    Article  Google Scholar 

  • Robinson, D. 1991. Strategies for optimizing growth in response to nutrient supply. Pages 177–205 in J. R. Porter and D. W. Lawlor, eds., Plant growth interactions with nutrition and environmental. Society for Experimental Biology, Seminar Series 43. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rôças, G., B. C. Franca, andF. S. Rubio. 1997. Leaf anatomy plasticity ofAlchornea triplinervia (Euphorbiaceae) under distinct light regimes in a Brazilian montane Atlantic rain forest. Trees 11:469–473.

    Google Scholar 

  • —,F. R. Scarano, andC. F. Barros. 2001. Leaf anatomical variation inAlchornea triplinervia (Spreng) Müll. Arg. (Euphorbiaceae) under distinct light and soil water regimes. Botanical Journal of the Linnean Society 136:231–238.

    Article  Google Scholar 

  • Ryser, P., andL. Eek. 2000. Consequences of phenotypic plasticity vs. interespecific differences in leaf and root traits for acquisition of aboveground and belowground resources. American Journal of Botany 87:402–411.

    Article  PubMed  Google Scholar 

  • Ryugo, K. 1988. Fruit culture. Wiley, New York.

    Google Scholar 

  • Rzedowski, J. 1978. Vegetación de México. Limusa Noriega, México, D.F.

    Google Scholar 

  • Salisbury, F. B., andC. W. Ross. 1992. Plant physiology. Wadsworth, Belmont, California.

    Google Scholar 

  • Schachtman, D. P., R. J. Reid, andS. M. Ayling. 1998. Phosphorous uptake by plants: from soil to cell. Plant Physiology 116:447–453.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, T. R., andL. H. Allen. 1982. Carbon dioxide and water vapor exchange of leaves on fieldgrown citrus trees. Journal of Experimental Botany 137:1166–1175.

    Article  Google Scholar 

  • Torres, M., andDJauregui. 1999. Caracterizacion anatomica foliar de cuatro especies de arboles frutales:Anacardium occidentale L. (merey);Manguifera indica L. (mango);Spondias purpurea L. (ciruela de huesito) yPsidium guajava L. (guayaba). Ernstia 9:154–173.

    Google Scholar 

  • Torres, R. E. 1984. Manual de conservatión de suelos agricolas. Díana, México D.E

    Google Scholar 

  • Vazquez-Yanes, C, A. I. Batis M., M. I. Alcocer S.,M. Gual D., andC. Sánchez D. 1999. Arboles y arbustos nativos potencialmente valiosos para la restauration ecológica y la reforestatión. Reporte tecnico del proyecto J084. CONABIO-Instituto de Eéologfa, Universidad Nacional Aútonoma de México, México D.E

    Google Scholar 

  • Zotz, G. andK. Winter. 1996. Diel patterns of CO2 exchange in rainforest canopy plants. Pages 89–118 in S. Mulkey, R. L. Chazdon and A. P. Smith, eds., Tropical forest plant ecophysiology. Chapman and Hall, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimenta-Barrios, E., Ramírez-Hernández, B.C. Phenology, growth, and response to light of ciruela Mexicana (Spondias purpurea L., Anacardiaceae). Econ Bot 57, 481–490 (2003). https://doi.org/10.1663/0013-0001(2003)057[0481:PGARTL]2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1663/0013-0001(2003)057[0481:PGARTL]2.0.CO;2

Key Words

Navigation